169 research outputs found

    Sulfur Metabolism and Sulfur-Containing Amino Acids Derivatives – II: Autism Spectrum Disorders, Schizophrenia and Fibromyalgia

    Get PDF
    The metabolism of sulfur (S) compounds concurs to the maintain of cell homeostasis and tissue integrity in the human body. Sulfur chemical species act in all cells as anti-oxidant/scavenging agents or regulators of membrane stability/excitability. At the same time, they also exert tissue-dependent functions behaving as protective molecules of the liver and cardiovascular system, as modulators of the immune response, gut activity and CNS neurotransmitter signaling. The involvement of S compounds in human complex, chronic, disabling diseases at multifaceted pathogenesis is actually under investigation: altered levels of S metabolites could be in fact bio-indicators of impaired oxidation state in the body and their unbalance could be risk factors for disease onset. By the present review, we will discuss data from the literature which unearth an altered S biochemistry in human complex illnesses, taking as an example highly invalidating neuropsychiatry and pain perception diseases as autism spectrum disorders (ASD), schizophrenia and fibromyalgia. As well, we will depict herein the utility at applying to this area of the clinical research high resolving -omics strategies in combination with methodological tools which specifically explore S metabolism in patients. The perspectives of these kind of analyses would be the adoption of more valuable, personalized therapeutics protocols and, possibly, an improved bio-monitoring of patients, also including their response to treatments

    Parkinson’s Disease and Alpha-Synucleinopathies: from Arising Pathways to Therapeutic Challenge

    Get PDF
    Parkinson’s Disease (PD) and alpha synucleinopathies are multifactorial disorders, which manifest through motor symptoms and non-motor symptoms involving the Central Nervous System (CNS), the Peripheral Nervous System (PNS) and, recently, also the Enteric Nervous System (ENS). The typical hallmarks of alpha synucleinopathies are proteinaceous inclusions of alpha synuclein (αS). In PD they are known as Lewy Bodies (LBs) and Lewy Neurites (LNs), discovered in dopaminergic neurons of substantia nigra (pars compacta) as well as in other regions of the central and peripheral nervous systems. Despite the clear causes which lead to LBs/LNs are still unknown, according to Braak’s theory, these inclusions appear first in PNS to spread, following neuronal innervation, towards the CNS in a spatio- temporal dissemination described in a staging procedure. In line with these observations, several animal models have been used with the purpose to reproduce PD as well as to propose new therapeutic approaches. Different pathways can cooperate to neurodegeneration in PD such as genetic mutations of αS gene, mitochondrial dysfunctions, neuroinflammation. The present review highlights αS as the key-word for PD pathology and alpha synucleinopathies and a main target in PD research. Several therapeutic approaches can be proposed, however all of them are addressed in advanced stages of the pathology. Our focus will be the alteration of αS physiological pathway, which allows to address therapy in early stages at intracellular or extracellular level, such as the use of anti ER-stress compounds and innovative immunotherapy, which could be promising tools to reduce neuronal degeneration and to halt PD progression

    Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans

    Get PDF
    L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactivemolecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the “kynurenine shunt” which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD+). This reviewaims therefore at tracing a “map” of themainmolecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation.We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field

    Changes in peripheral benzodiazepine receptors in patients with bipolar disorder

    Get PDF
    Peripheral benzodiazepine (BDZ) receptors were investigated by means of the binding of the specific ligand 3H-PK 11195 to platelet membranes in patients suffering from bipolar disorder and in healthy controls. The results showed that the density (Bmax) of peripheral BDZ receptors was significantly higher in patients than in control subjects, with no change in the dissociation constant. No correlation with demographic or clinical features was observed. These findings would suggest that alterations of peripheral BDZ receptors are present in patients suffering from bipolar disorder, but it is premature to conclude whether they may be related to the pathophysiology of the disorder, or are secondary to changes occurring in other systems, such as those regulating the stress response

    Brain-Derived Neurotrophic Factor (BDNF) and Serotonin Transporter (SERT) in Platelets of Patients with Mild Huntington’s Disease: Relationships with Social Cognition Symptoms

    Get PDF
    Peripheral biological correlates of early-stage Huntington’s disease (HD) are currently attracting much interest given their possible use as prognostic predictors of later neurodegeneration. Since deficits in social-cognition processing are present among the initial disease symptoms, aim of this work was to appraise, in blood platelets, Brain-Derived Neurotrophic Factor (BDNF) and serotonin (5-HT) transporter (SERT), two proteins involved in human adaptive behavior as potential biochemical correlates of such disabilities in mild-HD. Thirteen gene positive and symptomatic patients (9M/4W, HD-stage II, age> 40y) together 11 gender/age matched controls without a concurrent diagnosis of psychiatric disorders, underwent a blood test to determine BDNF storage and membrane-bound SERT in platelets by ELISA immune-enzyme and [3H]-paroxetine ([3H]-PAR) binding assays, respectively. Concomitantly, all subjects were examined through a battery of socio-cognitive and emotion recognition questionnaires. Results showed moderately increased intra-platelet BDNF amounts (+20-22%) in patients versus controls, whereas [3H]-PAR binding parameters, maximum density (Bmax) and dissociation constant (KD), did not appreciably vary between the two groups. While patients displaying significantly reduced cognitive/emotion abilities, biochemical parameters and clinical features or psychosocial scores did not correlate each other, except for platelet BDNF and the illness duration, positively correlated, or for SERT KDs and angry voice recognition ability, negatively correlated in both controls and patients. Therefore, in this pilot investigation, platelet BDNF and SERT did not specifically underlie psychosocial deficits in stage II-HD. Higher platelet BDNF storage in patients showing lasting-mild symptoms would derive from compensatory mechanisms. Thus, supplementary investigations are warranted by also comparing patients in other illness’s phases

    Salivary psoriasin (S100A7) correlates with diffusion capacity of carbon monoxide in a large cohort of systemic sclerosis patients

    Get PDF
    Background: Systemic sclerosis (SSc) is an autoimmune disease characterized by progressive fibrosis of the skin and the internal organs. In a previous work we suggested a correlation between levels of salivary psoriasin (S100A7) and pulmonary involvement in SSc patients. The goals of this study are to determine the distribution characteristics of psoriasin in whole saliva (WS) of SSc and healthy donor populations and define its predictive value on diffusion capacity of carbon monoxide (DLCO), along with others clinical parameters. Methods: Salivary level of psoriasin was determined by ELISA kit in 134 SSc patients, 63 Raynaud syndrome patients, 40 patients affected by other connective diseases (non-case) and 74 healthy control subjects. Results: A significant increase of salivary psoriasin was observed in SSc patients when compared with other healthy and pathological controls. Moreover, we confirmed the efficacy of salivary psoriasin to correlate with DLCO in a large cohort of SSc patients. Conclusions: Overall our results suggest a rapid, non invasive and low costing method which can help clinicians in the evaluation of SSc pulmonary involvement

    Melatonin and pro-hypnotic effectiveness of the antidepressant Trazodone: A preliminary evaluation in insomniac mood-disorder patients

    Get PDF
    Objective To preliminary investigate the link between the darkness hormone melatonin (MLT) and the pro-hypnotic effectiveness of the atypical antidepressant Trazodone (TRZ) in a group of mood disorder patients suffering of insomnia. Design and methods The study's design comprised: i) the enrolment of insomniac outpatients, ii) baseline (t0) psychiatric and biochemical examinations; iii) the subsequent patients' introduction into a treatment with TRZ for 3–4 weeks, followed by post-therapy re-evaluations (t1). The MLT function was investigated by t0/t1 ELISA determinations of 6-hydroxy-MLT sulfate (6-OH-MLTs) levels in early-morning urines and HPLC analysis of morning MLT serum amount. Concomitantly, TRZ and its metabolite m-chloro-phenylpiperazine (m-CPP) were measured by HPLC in serum to monitor patients' compliance/metabolism. Results Seventeen insomniac outpatients, displaying mild symptoms of depression/anxiety resistant to antidepressants, completed TRZ therapy (dose:10–20 mg/day, bedtime). Serum TRZ levels (127 ± 57 ng ml− 1, mean ± SD) confirmed patients' compliance, while the anxiogenic metabolite m-CPP resulting almost undetectable. Moreover, the 6-OH-MLTs output was found increased at t1 vs. baseline values (t1: 58.4 ± 45.02 ng ml− 1; t0: 28.6 ± 15.8 ng ml− 1; mean ± SD, P < 0.05) in 9 patients who recovered both insomnia and depression/anxiety (P < 0.01). Unresponsive subjects showed instead no post-therapy 6-OH-MLTs variation (t1: 48.53 ± 50.70 ng ml− 1; t0: 49.80 ± 66.53 ng ml− 1). Morning MLT in serum slightly diminished at t1 without reaching the statistical significance, not allowing therefore to define the patients' outcome. Conclusions This initial investigation encourages to explore MLT networks as possible correlates of TRZ pro-hypnotic responses

    Evaluation of formalin-fixed paraffin-embedded tissues in the proteomic analysis of parathyroid glands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteomic research in the field of parathyroid tissues is limited by the very small dimension of the glands and by the low incidence of cancer lesions (1%). Formalin-fixed paraffin-embedded (FFPE) tissue specimens are a potentially valuable resource for discovering protein cancer biomarkers. In this study we have verified the applicability of a heat induced protein extraction from FFPE parathyroid adenoma tissues followed by a gel-based or gel-free proteomic approach in order to achieve protein separation and identification.</p> <p>Results</p> <p>The best results for high quality MS spectra and parameters, were obtained by using a gel-free approach, and up to 163 unique proteins were identified. Similar results were obtained by applying both SDS-out and SDS-out + TCA/Acetone techniques during the gel-free method. Western blot analysis carried out with specific antibodies suggested that the antigenicity was not always preserved, while specific immunoreactions were detected for calmodulin, B box and SPRY domain-containing protein (BSPRY), peroxiredoxin 6 (PRDX 6) and parvalbumin.</p> <p>Conclusions</p> <p>In spite of some limitations mainly due to the extensive formalin-induced covalent cross-linking, our results essentially suggest the applicability of a proteomic approach to FFPE parathyroid specimens. From our point of view, FFPE extracts might be an alternative source, especially in the validation phase of protein biomarkers when a large cohort of samples is required and the low availability of frozen tissues might be constraining.</p

    Alteration of serotonin transporter density and activity in fibromyalgia

    Get PDF
    The aim of the study was to evaluate the kinetic parameters of a specific serotonin transporter (SERT) and serotonin uptake in a mentally healthy subset of patients with fibromyalgia. Platelets were obtained from 40 patients and 38 healthy controls. SERT expression and functionality were evaluated through the measurement of [(3)H]paroxetine binding and the [(3)H]serotonin uptake itself. The values of maximal membrane binding capacity (B(max)) were statistically lower in the patients than in the healthy volunteers, whereas the dissociation constant (K(d)) did not show any statistically significant variations. Moreover, a decrease in the maximal uptake rate of SERT (V(max)) was demonstrated in the platelets of patients, whereas the Michaelis constant (K(m)) did not show any statistically significant variations. Symptom severity score (tiredness, tender points index and Fibromyalgia Impact Questionnaire) were negatively correlated with B(max )and with V(max), and positively correlated with K(m). A change in SERT seems to occur in fibromyalgic patients, and it seems to be related to the severity of fibromyalgic symptoms
    • 

    corecore